

King Fahd University of Petroleum & Minerals
College of Computer Science and Engineering
Information and Computer Science Department

Second Semester 092 (2009/2010)

ICS 201 – Introduction to Computing II

Major Exam 1
Thursday, 25th March, 2010

Time: 120 minutes

:Name Key Solution

:#ID

:Please circle your section number below

Section 01 02 03 04

Instructor Sami Tarek Sukairi Sukairi

Day and Time SMW
7 - 7:50

SMW
8 -8:50

SMW
9 - 9:50

SMW
13:00 – 13:50

Question #
Maximum

Mark
Obtained

Mark

1 15

2 15

3 30

4 25

5 15

Total 100

Major 1 – ICS 201-092 2

Question 1 [15 Points (5 + 10)]

a) What is the right answer?

1) What does a derived class automatically inherit from the base class?

(a) instance variables
(b) static variables
(c) public methods
(d) all of the above

2) If the final modifier is added to the definition of a method, this means:

(a) The method may be redefined in the derived class.
(b) The method may be redefined in the sub class.
(c) The method may not be redefined in the derived class.
(d) None of the above.

3) Java does not use late binding for methods marked as:

(a) final
(b) static
(c) private
(d) all of the above

4) A class that implements an interface but only gives definitions for some of the
method headings given in the interface is called a/an:

(a) concrete class
(b) abstract class
(c) discrete class
(d) friendly class

5) If a method throws an exception, and the exception is not caught inside the
method, then the method invocation:

(a) terminates
(b) transfers control to the catch block
(c) transfers control to the exception handler

Major 1 – ICS 201-092 3

b) Given the following Shoe, TennisShoe, and WhiteTennisShoe classes:

class Shoe {
 public Shoe() {
 this("This is a shoe");
 System.out.println("Base Class");
 }
 public Shoe(String s) {
 System.out.println(s);
}
}

class TennisShoe extends Shoe {
 public TennisShoe(){
 this("This is a Tennis Shoe");
 System.out.println("Derived Class");
 }
 public TennisShoe(String s) {
 super("Exam 1");
 System.out.println(s);
}
}

class WhiteTennisShoe extends TennisShoe {
 public WhiteTennisShoe(String s) {
 System.out.println(s);
}
}

What is the output of the following Test class?

class Test {
 public static void main(String args[]) {
 new WhiteTennisShoe ("A white tennis shoe is created");
 }
}

Exam 1
This is a Tennis Show
Derived Class
A white tennis shoe is created

Major 1 – ICS 201-092 4

Question 2 [15 Points]

a. Is multiple inheritance allowed for classes in Java? If yes, give an example.
If no, explain why? (Multiple inheritance is when a class inherits from two
base classes).

No, Java allows only one base class to be inherited because it eliminates
inconsistent definitions of a single method.

b. What are the responsibilities of a class that implements a specific
interface?

To implement an interface, a programmer must do two things. First, the
phrase implements interface_name must be included at the start of the
class definition. To implement more than one interface, the interface
names must be separated by commas. The programmer must then
implement all the methods listed in the definition of the interface.

c. What are the two advantages to using inner classes?

There are two big advantages to using inner classes. First, because they
are defined within a class, they can be used to make the outer class self-
contained. The second advantage is that the inner and outer classes’
methods have access to each other’s private methods and private instance
variables.

Major 1 – ICS 201-092 5

Question 3 [30 Points]

The figure illustrates a Book inheritance hierarchy consisting of 6 classes and 1
interface. This illustration does not show all methods of the classes. It shows only the
members that you need in this exercise. Don't worry about the remaining members.

The empty arrows designate an inheritance relationship (for example, ChildrenBook
is derived from Book) and the filled arrow designate interface implementation
(AdultBook implements OrderedByPrice interface). Abstract classes are clearly
indicated.

The Book class is the base class, it is abstract and contains three instance variables:
name, price, and nbrPages as well as one abstract method : sellingPrice().
ChildrenBook class has also an instance variable age and it overrides sellingPrice()
method which returns the sellingPrice of the book. Cartoon class has colors instance
variable and also overrides sellingPrice() method. Class AdultBook is also derived
from Book, is abstract and implements OrderedByPrice interface. It has an instance

variable topic and an accessor method getTopic(). Classes MenBook and
WomenBook are derived from AdultBook but they are not abstract.

Part I [15 Points]

a) How many concrete classes are they in the above hierarchy? List them.

4 concrete Classes: ChildrenBook, Cartoon, MenBook, and WomenBook

Major 1 – ICS 201-092 6

b) Based on the figure above, write the heading (the first line) of class

AdultBook.

public abstract class AdultBook extends Book implements OrderedByPrice

c) Implement the method MoreExpensive (interface OrderedByPrice) in class
MenBook knowing that a MenBook object is more expensive than another
MenBook object if its sellingPrice (not price) is larger or equal than the
sellingPrice of the other MenBook object.

public boolean moreExpensiveThan(Object other)
{
 If(other == null)
 return false;
 else if (getClass() != other.getClass())
 return false;
 else

 { MenBook mbobject = (MenBook) other;
 return (sellingPrice() >= mbobject.sellingPrice());
 }

Part II [15 Points]
Consider the following test class with a main method:

public class TestBook{
 public static void main (String [] args){

 Book bookList = new Book[6];

 bookList[0] = new ChildrenBook(…);
 bookList[1] = new MenBook(…);
 bookList[2] = new Cartoon(…);
 bookList[3] = new WomenBook(…);
 bookList[4] = new WomenBook(…);
 bookList[5] = new MenBook(…);

 }
}

Major 1 – ICS 201-092 7

a) Given the bookList array, write a code fragment that computes and prints the
total selling price of all books in the array.

double sum = 0.0;
for(int i = 0; i < bookList.length; i++)
{
 sum += bookList[i].sellingPrice();
}

b) Given the same bookList array, write a code fragment that prints for every

object of type AdultBook its topic.

for(int i = 0; i < bookList.length; i++)
{
 If(bookList[i] instanceof AdultBook)
 { AdultBook abobject = (AdultBook) bookList[i];
 System.out.println(abobject.getTopic());
 }
}

Major 1 – ICS 201-092 8

Question 4 [25 Points]
Write an abstract super class called Part, with two attributes: the partNumber, and a
budgetCost for it. Write also three proper constructors. This class has two concrete
subclasses: SelfManufacturedPart, and PurchasedPart. A self-manufactured part
has a cost and a drawingNumber; it has also three constructors and a method
returning whether it is over budget or under budget. A self manufactured part is over
budget if its cost is larger than its budgetCost. A PurchasedPart has a set of
suppliers, each with a price for the part. It also has a method to retrieve the lowest-
cost supplier for a part and the corresponding cost, and also three proper
constructors.

Note: write only the required methods. A supplier can be implemented as an inner
class with two attributes: a name and a price.

public abstract class Part
{
 private String partNumber; // or int
 private double budgetCost;

 public Part()
 {
 partNumber = "";
 budgetCost = 0;
 }

 public Part(String partNumber, double budgetCost)
 {
 this.partNumber = partNumber;
 this.budgetCost = budgetCost;
 }

 public Part(Part other)
 {
 this(other.partNumber, other.budgetCost);
 }

 public String getPartNumber()
 {
 return partNumber;
 }

 public double getBudgetCost()
 {
 return budgetCost;
 }
}

Major 1 – ICS 201-092 9

public class SelfManufacturedPart extends Part
{
 private double cost;
 private String drawingNumber;

 public SelfManufacturedPart()
 {
 super();
 cost = 0;
 drawingNumber = "";
 }

 public SelfManufacturedPart(String partNumber, double budgetCost, double cost,
String drawingNumber)
 {
 super(partNumber, budgetCost);
 this.cost = cost;
 this.drawingNumber = drawingNumber;
 }

 public SelfManufacturedPart(SelfManufacturedPart other)
 {
 this(other.getPartNumber(),other.getBudgetCost(), other.cost,
other.drawingNumber);
 }

 public boolean overBudget()
 {
 return (cost > getBudgetCost());
 }
}

Major 1 – ICS 201-092 10

public class PurchasedPart extends Part
{
 private Supplier[] sup;

 private class Supplier
 {
 private String name;
 private double price;

 public String getName()
 {
 return name;
 }

 public double price()
 {
 return price;
 }
 }

 public PurchasedPart()
 {
 super();
 sup = null;
 }

 public PurchasedPart(String partNumber, double budgetCost, Supplier[] sup)
 {
 super(partNumber, budgetCost);
 this.sup = sup;
 }

 public PurchasedPart(PurchasedPart other)
 {
 this(other.getPartNumber(),other.getBudgetCost(), other.sup);
 }

 public Supplier lowestCost()
 {
 Supplier lowest = sup[0];
 for(int i = 1; i < sup.length; ++i)
 if(sup[i].price < lowest.price) lowest = sup[i];
 return lowest;
 }
}

Major 1 – ICS 201-092 11

Question 5 [15 Points]
a) What is the difference between Exception and Error in java? (2 Points)

 Exception and Error are the subclasses of the Throwable class.
 Exception class is used for exceptional conditions that user program should

catch.
 Error defines exceptions that are not expected to be caught by the user

program.

b) Differentiate between Checked Exceptions and Unchecked Exceptions? (3
Points)

 Checked Exceptions are those exceptions which should be explicitly handled
by the calling method. Happen when programs interact with the
world.Unhandled checked exceptions results in compilation error.

 Unchecked Exceptions are those which occur at runtime and need not be
explicitly handled. RuntimeException and its subclasses, Error and it's
subclasses fall under unchecked exceptions.

c) Is there anything wrong with this exception handling as written? Will this code
compile? (4 Points)

try {

 //some correct code with throw instructions

} catch (Exception e) {

 //some correct code

 } catch (ArithmeticException a) {

 //some correct code

 }

This first handler catches exceptions of type Exception; therefore, it catches any

exception, including ArithmeticException. The second handler could never be

reached. This code will not compile.

d) Identify and name the potential sources of exception in the following
statements. (6 Points)

 int [] arr = null;

 arr[0] = 1; // NullPointerException

 arr = new int [4];

 int i, j;

Major 1 – ICS 201-092 12

 for (i = 0; i <= 4; i++)

 arr[i] = i; // ArrayIndexOutOfBoundsException when i=4

 arr[i-1] = arr[i-1] / j; //ArithmaticException (Division by zero)

PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt")); // IOException

